小学数学鸡兔同笼教案人教版(优质16篇)

时间:2023-11-30 08:46:50 作者:碧墨

小学教案的编写需要根据教材的特点和教学大纲的要求,科学确定学习重点和难点。以下教案中的教学步骤详细清晰,能够帮助教师顺利完成教学任务。

四年级数学教案9,数学广角鸡兔同笼63人教版

《鸡兔同笼》(第一课时)。

教学。

设计教学内容:

人教版小学四年级数学下册。

第1。

03—105页教学目标:

知识技能1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

3.在解决问题的过程中培养学生的逻辑推理能力。

数学思考与问题解决经历解决问题的过程,体验分析解决问题的方法。

情感态度体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣。

重点:理解掌握解决问题的不同思路和方法。

难点:能运用不同方法解决实际问题。

教学过程:

一、创设游戏,提出问题师:同学们,前段时间我们学校进行了有关h7n9禽流感的知识讲座,大家还记得吗?其中就有一条要远离家禽,同学们做到了吗?其实,在这些家禽里也蕴含了一些数学知识。今天,我们就来学习一下著名的数学问题。先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:

师:一只鸡。

生:一只鸡,一个头,两只脚。

师:一只鸡和一只兔。

生:一只鸡和一只兔,两个头,6只脚。

……师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?……师:下面,我们来看看怎样解决这类问题的。

设计意图:创设游戏情境,很自然地引入课题。

二、出示表格,学习模式已知:鸡和兔共有5个头,16只脚。

问题:鸡和兔各有几只?画图法:

头兔兔鸡鸡兔脚兔有3只,鸡有2只。

鸡543210兔0123总脚数10121416列表法(枚举法):

兔有3只,鸡有2只。

文字说明:

1.画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。

2.列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;

假设3只鸡,2只兔,那么共有14只脚,也不符合条件;

假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。

设计意图:数形结合,以画促思,更好地帮助学生理解题意,同事激发学生学习兴趣。

三、

例题讲解那现在我把数量增加一点点,你们再来算一下?(出示例1)。

例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?1.尝试与猜想(分小组合作,活动后汇报、交流)。

四人小组按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。

画图法:

8个头26只脚兔有()只,鸡有()只。

鸡8765兔012总脚数1618列表法(枚举法):

兔有()只,鸡有()只经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和。

总结。

规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。

2.假设与探究假设全是鸡师:突然传来一阵鞭炮声,兔子们吓得全都用前面两只脚捂住耳朵,站立了起来。这时,兔子和鸡一样只有两只脚站在地上。同学们,听到这里,你想到了什么?你能列式解决这个问题吗?(小组合作探究,师生再交流)。

设计意图:拟人化的比喻,让学生兴趣盎然。

生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。

师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。

师:“10÷2=5”式中的10表示什么?2表示什么?生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,【板书1】:假设全是鸡:

8×2=16(只脚)。

兔子:10÷2=5(只)。

鸡:8-5=3(只)。

10÷2表示兔子的数量。

师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2就可以算出兔子的数量了。

假设全是兔师:鞭炮声停了,兔子们都把前脚放回到地上,这时所有的鸡看到兔子被鞭炮声吓倒,都笑得站不稳,用两只翅膀撑到地上,变成了鸡好像也有4只脚的样子。你又想到了什么?(小组合作探究,师生再交流)。

生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的个数有6÷2=3(只),兔的个数有8-3=5(只)。

【板书2】:假设全是兔:

8×4=32(只脚)。

鸡:6÷2=3(只)。

兔子:8-3=5(只)。

假设全是兔,就会先求出鸡的只数。

四、渗透文化,激发情感师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。

(独立完成后汇报、交流)。

师:同学们都做得很好,那么古代的人又是怎样解决这类问题的呢?下面我们一起来看看他们是怎样做的。(看阅读资料)。

设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。

五、畅谈收获师:今天的学习有趣吗?大家有哪些收获?生1:……生2:…………师:今天,我们通过了小组合作、自主探究学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。

小学数学鸡兔同笼教案

对于鸡兔同笼问题,只有个别的学生在校外曾接触到会用方程法列式计算。大多数孩子不知道怎么解决,更不要说多种方法解决了。由于方程是学生五年级新接触的内容,所以大多孩子还不习惯用方程解决问题。学生不会主动想到列表。基于学生的情况,在课堂教学过程中通过引导学生自主探索,合作交流,逐步掌握用列表法解决问题的方法,并对假设的方法有进一步的认识,准备在第二节课体会方程法的优越性。

小学五年级数学《鸡兔同笼》经典公开课教案

18.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)。

小学数学鸡兔同笼教案

1(课件示:书中112页情境图)。

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)。

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2.出示例一(课件示例一)。

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题。

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)。

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)。

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)。

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)。

生:说数量关系。(鸡脚数+兔脚数=26只脚)。

师:根据这个数量关系你能想到另两个数量关系吗?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8-x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8-x)=26根据26只脚-鸡脚数=兔脚数能列出26-2x=4(8-x)根据26只脚-兔脚数=鸡脚数能列出26-4(8-x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)。

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)。

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)。

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)。

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)。

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐。

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

小学数学鸡兔同笼教案

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)。

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)。

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

小学数学鸡兔同笼教案

(二)探索新知。

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下。

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习。

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

(四)小结作业。

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

小学数学《鸡兔同笼》教案

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

会用画图法、列表法和假设法解答“鸡兔同笼”问题。

用合理的方法解答生活中的“鸡兔同笼”问题。

多媒体课件、表格等。

一、创设情境、揭示课题。

1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2.播放视频,介绍:2015年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题)。

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

1.师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)。

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)??兔子8-5=3(只)??鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)。

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

生:是什么样的假设法,让我们先睹为快!

师:还有别的做法吗?怎样解答?

小学数学鸡兔同笼教案

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

列表法。

方程法假设法。

解:设有兔x只,鸡就有2(8-x)只。全看作鸡。

4x+2(8-x)=268×2=16(只)。

x=54-2=2(只)。

8-5=3(只)10÷2=5(只)。

答:有5只兔,3只鸡。8-5=3(只)。

26-4x=2(8-x)全看作兔。

26-2(8-x)=4x8×4=32(只)。

26-2x=4(8-x)4-2=2(只)。

26-4(8-x)=2x6÷2=3(只)。

8-3=5(只)。

北师大版小学五年级数学《鸡兔同笼》教案

尊敬的各位评委,各位老师:

大家好!

我所说课的内容是北师大版五年级上“尝试与猜测”的第一课时《鸡兔同笼》,教材安排了此类应用题,且把它归类于尝试与猜测这个大课题之下,其用意就是要学生通过对日常生活中的现象进行观察与思考,并从中发现一些特殊的规律。教材借助于“鸡兔同笼”这个载体,让学生经历列表,尝试和不断调整数据的过程。从中体会解决问题的一般策略——列表。

围绕“鸡兔同笼”使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。

学生在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试法列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

基于以上认识,我确立了本节课的教学目标:

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

教学过程中我将游戏导入立足于学生的生活经验和知识背景,新授部分围绕着“自主参与---合作学习----深刻体会”让学生开展学习活动。我将教学过程分为以下四个部分:

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二新授部分,通过观察主题图,确定数学信息,根据要求填写表格。汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

三迁移练习,综合应用。

四课堂总结及情感目标延伸。

课堂教学实施过程:

一游戏导入。

初步计算鸡兔的总腿数。“今天我们来玩个接数游戏,请你仔细听,然后大家一起接数。一只小鸡一只兔,两个头六条腿。两只小鸡两只兔,四个头十二条腿。。。。。。”目的是在学生头脑中对鸡兔的头,腿的总数有个初步映像。在这里利用了生活资源调动学生的已有的知识背景来参加这个活动,使其产生了浓厚的兴趣。同时游戏导入也起到了引题的作用。此时介绍我国古代数学名著《孙子算经》,让学生了解我国古代数学的光辉成就,渗透德育教育。

二新授部分。

1(课件)出示主题图。让学生根据数学信息,结合刚才的游戏去猜鸡兔各有多少只?学生猜测的数据都能符合鸡兔有20个头这个条件。要想验证数据是否正确,就是要看腿的总数是否符合题上的条件54条。

2于是,安排了学生自己列表填数来解决问题。在这个过程中,如何凭自己的猜测来调整数据就显得尤为重要。猜测是要学生根据自己的知识背景和生活经验。让学生分组合作讨论。因为已经有了导入的铺垫所以在这个环节我没有给与更多的提示。

3展示学生的表格与书本相似的。我先把问题抛给学生:现在老师给大家一点时间,请你仔细看看这三张表格是怎样填数的。小组再一次合作交流。

第二张表格是学生自己汇报完成。强调跳跃尝试法的制表过程。它有很多种呈现方式。可以从2只鸡,18只兔开始。每次增加2只鸡。或者是每次增加不同数量的鸡的只数。

第三张表格,老师和学生共同完成。这种方法对于一些思维活跃的学生是一次提升的过程。总结制表方法:取中尝试法。

三迁移练习,综合应用。

我把教材的练习题部分改动。因为本课主要不是为了解决“鸡兔同笼”问题本身,而是借助这个载体解决与之类似的问题。

第一题是为了巩固本课的新知。

第二题的答案有两个,在学生找到第一个答案的时候。引导学生继续举例。这说明了数学答案的不唯一性,要求学生有严谨的学习态度。

四课堂总结及情感目标延伸。

1总结列表是解决一般问题的策略,以及列表的三种方法。

2根据时间灵活安排《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

五反思教学效果。

深入浅出的教学过程让学生体会到了列表不仅可以解决鸡兔同笼的问题,还可以解决生活中的问题。新课标指出数学来源于生活更要应用于生活。

本节课能够顺利完成,那是因为学生的合作交流得到了充分的发挥。让学生学会讨论,合作交流。讨论会使学生成为知识的共同创造者!

以上就是我的反思性说课。这是我第一次参加这种形式的比赛。感谢一直帮助我的网友,老师。我的课不一定成功,但这次非比寻常的经历却让我成功的学到了很多知识。

尝试与猜测(鸡兔同笼)教学设计第二稿。

哈市松北区万宝中心校车成超。

教材分析。

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

学情分析。

在此之前,学生已经在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

教学目标。

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

针对本节课的教学目标及重、难点,根据五年级学生的认知水平,本节课的教学思路是。

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二通过观察主题图,确定数学息,根据要求填写表格。

三汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

(一)游戏导入,初步计算鸡兔腿数。

师:同学们,我们来玩一个接数游戏好吗?要求事请你仔细听,咱们大家一起数下去。

一只小鸡,一只兔,两个头,六条腿。

两只小鸡,两只兔,四个头,十二条腿。

三只小鸡,三只兔,六个头,十八条腿。

四只小鸡,四只兔,八个头,二十四条腿。

五只小鸡,五只兔,十个头,三十条腿。

师:同学们数得很准确。原来在动物身上有许多数学信息是值得研究的数学问题。如在我国古代数学名著《孙子算经》中有这样一个题目:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?就是研究鸡兔同笼的问题。今天我们就来学习有关鸡兔同笼问题的应用题。(板题)。

二自主探索,发现新知。

1(课件)。

师:从图中你能知道哪些数学信息?(有鸡、兔,20个头,54条腿)。

现在同学们就来猜一猜鸡兔各有多少只?(可以根据我们刚才玩的游戏)。

师:把你猜想的结果跟你的同桌交流交流。

生1:鸡7只,兔13只。

师:他的答案是否正确呢?我们就来验证一下。

腿:14+52=66条。

生2:猜测鸡是15只,兔是5只,腿50条。

师:总腿数少了4条,怎么办?请同学们用老师发的这张表格完成你的猜想。

(展示学生的表格与书本相似的)。

现在老师给大家一点时间,看看这三张表格是怎样解决这个问题的?5分钟。

师:现在我们就来具体看看这三张表格。

1课件出示:第一张表格。

师:谁来解释一下第一栏的过个数字各代表什么意思?

谁来说说第二栏的各数的意思?

师:你们认为第一张表是按照什么样的顺序来找到正确答案的?

(第一张表,它是先假设鸡有一只,则兔子有19只,看腿的总数是不是54条,腿多了,说明兔子多了,然后依次增加一只鸡,减少一只兔,就这样依次的用一只鸡换一只兔,再算腿的总数符不符合条件,直到找到正确答案为止。最后经过了13次计算,终于找到了答案。)。

师:我们给这种列表方法取个名字叫“逐一尝试法”

小结:从表中我们可以看出每减少一只兔增加一只鸡,腿的总数都减少2只。

下面我们来看第二张表。

2、课件出示第二张表:

师:谁愿意说说第二张表格的列表过程?

第一次换了4只鸡,总腿数减少8条。第二次又换了5只鸡,总腿数减少10条。于是又换了5只鸡,总腿数是50条。由此可以判断兔的只数应该在5和10之间。接下来又增加1只兔,2只兔,得到正确答案13只鸡,7只兔。

师:我们给这种列表方法也取个名字叫“跳跃尝试法”。

3、课件出示第三张表。

师:谁来解释一下第三张表是如何来解决这个问题的?

生:先是假设兔子数和鸡的只数各一半,发现总腿数偏多,于是肯定兔的只数多了,应该减少兔子的只数来增加鸡的只数。

师:我们给这种列表方法取个名字叫“取中尝试法”

师:看完了这三张表,你能不能说说这三“逐一尝试法,跳跃尝试法和取中尝试法”在列表解决这个问题时有什么不一样的地方?)。

师小结:逐一尝试法:优点是能够引导大家发现规律,而且答案不会遗漏。

跳跃尝试法:优点是尝试的范围缩小了一半。

取中尝试法:需要不断调整,思维价值大。

三作业布置,巩固提高。

1、停车场里有三轮车和自行车共22辆,有59个轮子,自行车、三轮车各几辆?

四全课总结。

在这节有趣的数学课上,你学到了什么知识?

(灵活安排)介绍《孙子算经》:《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

鸡兔同笼为题的小学数学日记

约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?我想了半天,百思不得其解,于是,便看了看下面的故事:

原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他它们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。

当然,这道题还可以用方程来解答。我们可以先设兔的只数(也就是头数)是x,因为“鸡头+兔头=35”,所以“鸡头=35-x”。由此可知,有x只兔,应该有4x只兔脚,而鸡的只数是(35-x),所以应该有2×(35-x)只鸡脚。现在已知鸡兔的脚总共是94只,因此,我们可以列出下面的关系式:

4x+2×(35-x)=94。

x=12。

你说,我算的对吗?你还有别的算法吗?

小学数学鸡兔同笼教学设计

1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。

2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。

3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。

4.体会数学问题在日常生活中的应用,进而体会数学的价值。

学情分析。

“鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

教材的编排有以下特点:

1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。

2.注重体现解决“鸡兔同笼”题目的不同思路和方法。

3.让学生进一步体会到这类题目在日常生活中的应用。

教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。

教学过程。

活动1【导入】激趣导入引发思考。

课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)。

活动2【活动】合作交流预设生成。

(一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)。

(二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。

1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。

请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)。

(1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)。

(4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)。

重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?

(三)回顾与交流。

谢谢同学们还有其他的方法解决这道题吗?

(四)继续交流分享。

2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。

师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。

(学生表演,借助学生表演理解算术解法每一步的意思)。

师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。

3.生:我用的.是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。

生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。

师:这道题用画图的方法可行吗?

生:数目简单的时候可行。

师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。

4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。

师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。

活动3【练习】联系生活建构模型。

同学们,生活中有没有类似鸡兔同笼这样的问题呢?我们走进生活一起去找一找吧!请看租船中的问题:

全班一共有38人,共租了8条船,大船能坐6人,小船能坐4人,每条船都坐满了。大、小船各租了几条?(38人相当于鸡兔同笼的腿数,8条船相当于头数,大船坐6人相当于6条腿的怪兔,小船相当于4条腿的怪鸡)。

活动4【测试】实际应用解决问题。

尝试运用你喜欢的方法独立完成此题。

就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?哪种方法解决最好?

活动5【作业】生活拓展谈谈收获。

结束语:孩子们,课上到这里,你还有什么疑问或想法吗?老师通过这节课和同学们的交流,觉得你们太棒了,你们通过课前自学,课上通过交流并分享了自己的研究成果,还用学到的方法解决了生活中的许多类似问题,相信同学们只要保持这种研究精神,一定能有更多的收获。谢谢同学们!

小学数学鸡兔同笼教学设计

一、课题与内容:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于六年级的学生来说,解决“鸡兔同笼”问题“假设法”有利于培养学生的逻辑推理能力。

二、教学目标:

知识与技能目标:

通过猜想列表法和假设尝试法使全体学生初步感知两种方法从数到形的转化过程,尝试用不同的方法解决“鸡兔同笼”问题,体会代数方法的一般性,培养学生的逻辑推理能力。

过程与方法目标:

经历“鸡兔同笼”问题的探究与解答过程,使全体学生体会分析问题、解决问题的方法。

情感态度价值观目标:

让学生感受数学与日常生活之间的`密切联系,培养学生分析解决问题的方法。

三、教学过程。

活动1:活动名称:初步感知猜想列表。

活动意图:通过学生的大胆猜测,不断验证,使全体学生初步建立头和腿的联系。由于猜想的局限性,让学生通过列表法有序进行列举,培养学生严谨的思维能力。

活动组织过程:(10分钟)。

1、出示例题:鸡兔同笼,有6个头,共16条腿,几只鸡,几只兔?

2、读题,审题,学生先猜测。

3、怎么确定同学们的猜测是否正确?

4、用列表法进行验证。

5、像这样把数字一一列举的方法叫做“列举法”。

6、那如果对大的数据来说,猜测或列表法会有什么问题?

7、这节课我们来研究新的方法。

问题:会有重复或有遗漏。

活动2:活动名称:假设法尝试。

活动意图:让学生在猜测列表的基础上,运用假设法使全体学生初步理解什么是假设。在列表法变化规律的基础上,以独立思考,小组合作,交流汇报的形式,用课件动画的模式进行辅助学生,让学生了解算理,培养学生的逻辑思维能力和推理能力。

活动组织过程:(20分钟)。

1、出示例题:鸡兔同笼,有8个头,共26条腿,几只鸡,几只兔?

2、假设全是鸡一共有多少条腿,比实际多还是少了多少条腿,多或少了谁的腿呢?

3、把上面的过程用算式表示出来。

4、计算出结果,怎们检验结果是否正确。

5、假设全是兔,又该如何解决呢?

6、小组交流,汇报结果,自我检查结果是否正确。

7、说一说学习方法。

问题:假设中多或少的部分学生会有疑惑。

活动3:灵活运用。(10分钟)。

活动意图:通过鸡兔同笼问题与实际生活相结合,让学生进一步感受到我国古代数学的魅力。与生活实际相联系,进一步巩固本节课所学习的鸡兔同笼问题在实际生活中的正确理解与运用,使学生的逻辑思维能力和推理能力得到进一步的提升。

活动组织过程:。

1、出示例题:自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有几辆?

2、读题,审题,独立尝试。

3、小组交流。

4、全班交流汇报。

问题:本题的难点对数形结合思想的联系不够。

四、小结本节内容。

:谈谈你的收获与不足?

五、教学反思:

小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。

小学数学鸡兔同笼课件

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:

(1)鸡和兔共8只;

(2)鸡和兔共有26只脚;

(3)鸡有2只脚;

(4)兔有4只脚;

(5)兔比鸡多2只脚。(课件演示)。

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。

5、观察发现,列式计算。

三、合作交流:5分钟。

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟。

解决鸡兔同笼这类问题,有几种假设的方法?

五、小结检测:20分钟。

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。

(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。

(注:如果前面出现了折半列表,就把这个环节提前讲。)。

b、解决问题。

(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

作业:p106;1、2、3。

板书:

假设全是鸡,就有脚8×2=16(只)。

比实际少26—16=10(只)。

一只鸡比一只兔少4—2=2(只)。

兔子:10÷2=5(只)。

鸡:8—5=3(只)。

小学数学《鸡兔同笼》教学反思【】

本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。

“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。

对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。

小学鸡兔同笼教案

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标。

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的'知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流。

1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?……。

(2)请你们猜一猜将鸡、兔可能是几只?(……)。

(3)把你猜的过程给大家说一说。

(4)板书学生的过程。

鸡123。

兔432。

腿181614。

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程。

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)。

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只。

小组4:方程。

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。

三、适时反思,掌握策略(两题任选其一)。

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸。

1、课后练习1、2、3(比较不同-----答案是否唯一)。

2、通过今天的学习,有什么收获?

鸡兔同笼为题的小学数学日记

今天的一堂课,又让我感受到了学习的快乐。老师教我们用“鸡兔同笼”法解题,其中一道题是这样写的:

老师问:“这道题谁会解答?”我举手了,但老师没发现,自己讲解了:“其实这道题蛮简单的。我们由3头牛和8只羊一天共吃草42.5千克,可知3×3头牛和8×3只羊一天可吃……”老师的解答步骤共有4步,而我想的才用了3步。老师讲完后,我说:“老师,我只要用3步就能解决问题。”老师说:“那你说一说你的解法。”我说:“条件里说一头牛一天吃的草是羊一天吃草数的3倍,我把牛转化成羊来算后,3头羊就转化成3×3只羊,一共有9+8=17只羊,用3头牛和8只羊一天吃草的'总量42.5÷17=2.5千克,求出每只羊每天吃草2.5千克了。”老师笑着说:“对,安婷的解题方法叫作替代法,用在这道题上使解答很简便,大家以后要向她学习这种不断求新的学习态度,不要只满足于一种解法。”夸得我心里美滋滋的。

我学习,我快乐,这里的“风景”真奇特,同学们,让我们一起来欣赏它吧!

相关范文推荐
  • 11-30 督导组工作总结上讲话(优秀13篇)
    月工作总结不仅是对过去的回顾,更是对未来工作的规划和设想。以下是一些成功的月工作总结报告,希望能够给大家提供一些写作技巧和灵感。今年上半年来,秘书组以全市党委办
  • 11-30 煤矿掘进事故心得体会(实用20篇)
    心得体会是一种重要的反思方式,通过对自己经验的总结和梳理,我们能够更好地发现问题和改进方法。下面为大家分享一些精选的心得体会范文,希望大家能够从中获得一些灵感。
  • 11-30 致广播员的广播稿(汇总18篇)
    在广播稿的撰写过程中,我们需要注意节奏感和语音表达的准确性,以保证听众能够有效地接收信息。下面是一些备受听众喜爱的广播稿片段,欢迎大家一起品味和分享。
  • 11-30 风险管理年度工作报告范文(14篇)
    工作报告是对自己工作的梳理和总结,也是对团队和领导的一种负责任的表现。接下来,为大家提供几篇优秀的工作报告范文,希望能够对大家的写作有所启发。各位领导、各位同事
  • 11-30 申请加入安全部申请书(精选14篇)
    在撰写更多申请书前,我们需要对目标学校或机构进行详细研究。以下是一些更多申请书的范文,希望能够给大家提供一些写作思路和样式参考。尊敬的晨星文学社领导:。您们好!
  • 11-30 校医年度工作总结(通用17篇)
    月工作总结是自我管理过程中不可或缺的一环,它鼓励着我们每月都能进行自我反省,进而不断调整和提高自己的工作态度和方法。请大家阅读以下月工作总结范文,查找自己在写作
  • 11-30 歌咏比赛领导致辞(优质19篇)
    比赛是一种评判个人或集体能力的方式,可以提高参与者的自我认知和提升竞技水平。接下来,让我们一起来看看一些优秀选手在比赛中的精彩表现。同志们:。大家上午好!今天,
  • 11-30 建房加层合同协议书(实用23篇)
    合同协议可以规定双方的权力和责任范围,确保双方在合作期间遵守规则。现在就让我们来看看一些经典的合同协议范文,帮助你更好地起草合同文件。甲方(发包人)。乙方(承包
  • 11-30 饮料销售工作计划(专业20篇)
    销售工作计划可以帮助销售人员有目标地开展销售活动,提高客户满意度和忠诚度。接下来,让我们一起来看看一些成功销售人员的销售工作计划方法和经验。。8、为降低经销商市
  • 11-30 商务汽车租赁申请书好(优秀20篇)
    租赁可以提供临时性的使用权,方便人们获取所需的资源。租赁是一种人们在特定时间内以支付一定费用的方式使用他人的财产或资产的行为,它可以为我们提供暂时的使用权,满足